Tree Automata with Global Constraints
نویسندگان
چکیده
A tree automaton with global tree equality and disequality constraints, TAGED for short, is an automaton on trees which allows to test (dis)equalities between subtrees which may be arbitrarily faraway. In particular, it is equipped with an (dis)equality relation on states, so that whenever two subtrees t and t′ evaluate (in an accepting run) to two states which are in the (dis)equality relation, they must be (dis)equal. We study several properties of TAGEDs, and prove decidability of emptiness of several classes. We give two applications of TAGEDs: decidability of an extension of Monadic Second Order Logic with tree isomorphism tests and of unification with membership constraints. These results significantly improve the results of [10].
منابع مشابه
Decidable Classes of Tree Automata Mixing Local and Global Constraints Modulo Flat Theories
We define a class of ranked tree automata TABG generalizing both the tree automata with local tests between brothers of Bogaert and Tison (1992) and with global equality and disequality constraints (TAGED) of Filiot et al. (2007). TABG can test for equality and disequality modulo a given flat equational theory between brother subterms and between subterms whose positions are defined by the stat...
متن کاملTree Automata, (Dis-)Equality Constraints and Term Rewriting - What's New?
Connections between Tree Automata and Term Rewriting are now well known. Whereas tree automata can be viewed as a subclass of ground rewrite systems, tree automata are successfully used as decision tools in rewriting theory. Furthermore, applications, including rewriting theory, have influenced the definition of new classes of tree automata. In this talk, we will first present a short and not e...
متن کاملTREE AUTOMATA BASED ON COMPLETE RESIDUATED LATTICE-VALUED LOGIC: REDUCTION ALGORITHM AND DECISION PROBLEMS
In this paper, at first we define the concepts of response function and accessible states of a complete residuated lattice-valued (for simplicity we write $mathcal{L}$-valued) tree automaton with a threshold $c.$ Then, related to these concepts, we prove some lemmas and theorems that are applied in considering some decision problems such as finiteness-value and emptiness-value of recognizable t...
متن کاملRigid Tree Automata
We introduce the class of Rigid Tree Automata (RTA), an extension of standard bottom-up automata on ranked trees with distinguished states called rigid. Rigid states define a restriction on the computation of RTA on trees: two subtrees reaching the same rigid state in a run must be equal. RTA are able to perform local and global tests of equality between subtrees, non-linear tree pattern matchi...
متن کاملMultidimensional fuzzy finite tree automata
This paper introduces the notion of multidimensional fuzzy finite tree automata (MFFTA) and investigates its closure properties from the area of automata and language theory. MFFTA are a superclass of fuzzy tree automata whose behavior is generalized to adapt to multidimensional fuzzy sets. An MFFTA recognizes a multidimensional fuzzy tree language which is a regular tree language so that for e...
متن کاملFinite automata on unranked trees: extensions by arithmetical and equality constraints
The notion of unranked trees has attracted much interest in current research, especially due to their application as formal models of XML documents. In particular, several automata and logic formalisms on unranked trees have been considered (again) in the literature, and many results that had previously been shown for the ranked-tree setting have turned out to hold for the unranked-tree setting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Found. Comput. Sci.
دوره 21 شماره
صفحات -
تاریخ انتشار 2008